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A method is given for incorporating Dirac's Large Numbers hypothesis into 
Einstein's standard theory of general relativity. The method involves the assump- 
tion that at each point in space there exist two types of clocks, a cosmological 
clock measuring ephemeris time r and an atomic clock measuring atomic time 
t A. Newton's law of universal gravitation is formulated relativistically in terms 
of these two times and the proper distance determined by measuring rods between 
simultaneous events, and a method is given for operationally identifying G. The 
Large Numbers hypothesis requirement that GA oc 1/t A is then used to establish 
the relationship between the two times. Alternative derivations of the time 
relationship not involving a time-varying gravitational "constant" are obtained 
by intercomparison of various large numbers. It is shown that the resulting 
relationship between t A and z gives agreement with the observed natural micro- 
wave radiations. Also, the Large Numbers hypothesis leads to a time formed from 
the fundamental constants of Nature that is comparable to the age of the Universe. 

1. I N T R O D U C T I O N  

Building on an observation put forth by Eddington (1931), Dirac (1938) 
has pointed out that there are certain large dimensionless numbers (LN's)  
that can be constructed from the physical parameters  of  Nature, such as 

Coulomb force between proton and electron 
LN1 - 

gravitational force between proton and electron 

ke 2 
- -  - 2.3 x 1039 (1) 
Gmemp 
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LN2 = 
the age of the Universe 

time for light to traverse an electron 

t 
1039 (2) 

- ke2/rnec 3 

(LN3)2 = mass of Universe moving away from us with speed < c / 2  

mass of a proton 

(1039) 2 (3) 

Dirac believed that it must be more than coincidence that these large 
dimensionless numbers are so closely related. He has therefore proposed 
a Large Numbers hypothesis (LNh) that asserts that large dimensionless 
numbers in Nature must be interrelated by equations where the coefficients 
are close to unity. 

Since the large number (2) varies with the age of the Universe, it then 
follows from the LNh that the other large numbers must also vary with the 
age of the Universe. Combining (2) with (1), and assuming that the variable 
quantity is G, Dirac gets 

a o c  t -1 (4) 

Similarly, combining (2) with (3), Dirac gets 

(LN3)2oc t 2 (5) 

The LNh arguments given here are based upon Newtonian ideas, with 
t being the absolute Newtonian time. There remains the problem of incor- 
porating the LNh concept into the formalism of general relativity and 
quantum theory. One difficulty encountered is that the Newtonian parameter 
G appears as a constant on the right-hand side of Einstein's field equations 
G p~= - ( 8 ~ r G / c 4 ) T  p~ because of the requirement that the field equations 
must give the appropriate Newtonian limit where spacetime becomes flat. 
If  G (or c) were to vary with time, the equality would be upset. 

To get around this difficulty, Dirac (1979) has assumed that there are 
two different systems of units of length and time in Nature, an Einstein 
(E)  system and an atomic (A) system. In the E system, time is measured 
by the ephemeris time governing the motions of galaxies and planets, while 
in the A system time is measured by the periodic vibrations of atoms. Dirac 
required that there must be two different metrics for the Universe, an Einstein 
metric dsE and an atomic metric dSA. From purely dimensional arguments, 
Dirac worked out that the two metrics must be related by 

dsE = tA dSA (6) 
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from which he determined that the ephemeris time ~- and the atomic time 
tA are related by 

.r = �89 (tAn = present epoch) (7) 

Working in the A system of units and using dimensional arguments with 
(5), Dirac determined that the galaxies will evolve according to 

R A -- ktlA/3, k = const (8) 

Dirac finally concluded that the model of  the Universe that will be in 
agreement with his LNh and the E and A metrics is the Einstein-de Sitter 
(ES) Universe, which is a zero curvature Universe where the cosmological 
fluid has zero pressure and where the cosmological constant equals zero. 
We will discuss the ES Universe in more detail in Section 3. 

In this paper  we develop an approach for incorporating the LNh into 
general relativity that is different from the way Dirac proceeded. We shall 
adopt  the basic idea from the LNh that cosmological processes may evolve 
at rates that do not remain synchronous with the evolution of atomic 
processes. This means that if one has a cosmological clock coincident with 
an atomic clock, the ratio of  the periods of  the two clocks will vary with 
the age of the Universe. This fact by itself in no way requires the need for 
two metrics nor two different length standards. It simply means that along 
the world line of  a coincident cosmological clock and atomic clock there 
will be two different rates of  "ticking" of  clocks, a cosmological rate dT 
corresponding to the evolution of galaxies and an atomic rate dtA corre- 
sponding to the evolution of atoms, and the ratio d z / d t A  of the two types 
of  tickings need not remain constant as the Universe evolves. 

I f  we possessed a complete theory of atomic processes combined with 
gravitational processes, the ratio d'r /dtA could be worked out from first 
principles. However, such a unified theory does not exist at present. To 
make progress, we must therefore resort to some additional principles or 
hypotheses to guide our thinking. As will be seen, the LNh will be the 
vehicle that will guide us to the relationship between tA and ~-. 

Our approach is founded on previous work we have done (Gautreau, 
1984) in reformulating cosmological theory in terms of coordinates (R, T), 
where ~" is the ephemeris time measured by cosmological processes and the 

curva tu re  coordinate R is the proper  distance determined by measuring 
rods between events that are simultaneous relative to the ephemeris time 
T. This is discussed in Sections 2 and 3. The main idea behind our approach 
is to have a cosmological clock and an atomic clock located together at the 
same point, and thereby moving along the same common geodesic world 
line through space-time, as described in Section 4. The relationship between 
T and tA is obtained by using the LNh together with an operational way 
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of identifying G from Newton's  law of universal gravitational attraction, 
as discussed in Sections 5-7. In Section 9 we show how our approach is in 
agreement with observations of  the natural microwave radiation. Alternative 
derivations of  our resulting ~-- tA relationship based upon large numbers 
that do not involve a time-varying gravitational constant are given in Section 
11. The time variation of the various LN's  are summarized in Section 12, 
and Section 13 shows how the age of the Universe can be related to 
fundamental  constants of  Nature. 

2. R E F O R M U L A T I O N  OF C O S M O L O G I C A L  THEORY 

Standard discussions of  zero curvature cosmologies usually start with 
the metric for the Universe expressed in terms of isotropic coordinates (r, z) 
a s  

ds2(r, "r) = e2h~)(dr2+ r 2 d ~  2) - c 2 d~ -2, d ~  2 = d02+ sin 2 0 d~b 2 (9) 

A particular Universe is determined by specifying the expansion parameter  
e h(~). The metric is "isotropic" in form because its spatial part is proport ional  
to drZ + r 2 d ~  z. 

We have recently shown (Gautreau, 1984) that it is possible to develop 
a consistent theory of cosmology that does not begin with the isotropic 
metric form (9), but rather starts by expressing the metric for the Universe 
in terms of  curvature coordinates (R, T) in the form 

ds2(R,  T ) =  A - I ( R ,  T)  d R 2 +  R 2 d l ) : - B ( R ,  T ) c  2 d T  ~ (10) 

The metric (10) is "curvature" in form because the angular part is equal to 
R 2 d ~  2. One then replaces the curvature time coordinate T with the 
ephemeris time ~- measured by clocks in the cosmological fluid (the galaxies) 
to get the metric in terms of measured coordinates as 

ds2(R,  ~') = [ d R  - R H O ' )  dr]2+ R 2 d ~  2 -  c: d~ 2, H(~) = dh/d.~ (11) 

The coordinates (R, ~-) are referred to as "measured"  for the following 
reason: I f  one looks at the subspace z =  const, one finds from (11) 

ds2(R,  ~- = const) = d R 2 +  R 2 d ~  2 (12) 

from which one finds that the proper distance AL in this subspace between 
two events lying along the same radius is 

A L  = [- ds = AR (13) 
J ~-=const 

This means that the curvature spatial coordinate R has the physical signific- 
ance that it measures proper  distance between ~--simultaneous events. We 
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have previously pointed out this interpretation for R in the Schwarzschild 
field (Gautreau and Hoffmann, 1978). Thus, in the (R, r) coordinate system 
of the metric form (11) one has the picture where r is the ephemeris time 
measured by the motions of  planets and galaxies, while R is the proper  
distance that is determined by measuring rods between events at any given 
cosmological time r = const. 

I f  desired, one can transform (11) into (9) by changing the spatial 
coordinate from R to r via 

R = r e  h(~ (14) 

But with the approach taken here, this will not be necessary. 

3. T H E  E I N S T E I N - D E  SITTER UNIVERSE 

From now on we will consider only an expanding Einstein-de Sitter 
(ES) Universe, which has zero pressure and zero curvature with the cosmo- 
logical constant equal to zero. Dirac (1979) claims the ES Universe is in 
agreement with his LNh. The ES Universe in each of the three coordinate 
systems mentioned in Section 2 appears as follows (Gautreau, 1984). In 
(R, r) coordinates 

ds2(R,  z ) = [  d R - ( 2 R / 3 c ~ ) c d r ] 2 +  R2 d f ~ 2 - c i  dr  2 (15) 

The time transformation that takes one from ephemeris time r to curvature 
time T is 

T = r[1 +1(2R/3cr )213/2  (16) 

giving the ES metric in (R, T) coordinates as 

d R  2 d T  2 
ds2( R,  T )  - I- R 2 d f l  2 - c 2 

1 - ( 2 R / 3 c r )  2 [1 - ( 2 R / 3 c r ) 2 ] [ 1  +�89 cr) 2] 
(17) 

in which r ( R ,  T )  is given implicitly by (16). The expression for the metric 
for the ES Universe in (r, r) coordinates is obtained by changing from the 
spatial coordinate R used in (15) to a new comoving spatial coordinate r 
defined by 

R = r ( r / % )  2/3 (18) 

to get the well-known isotropic form 

ds2( r, r) = ( r /  rn)a/3( dr2 + r 2 df~ 2) - c 2 dr  2 (19) 

The following discussions will be centered mainly around the form 
(15), whose subspace r = const is given by (12), so, as described in Section 
2, R is the proper  distance between r-simultaneous events. 
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The measured coordinates (R, r) give a new way of viewing the evol- 
ution of the ES Universe after the big bang at z = 0. When one works out 
the null and timelike geodesics for the metric form (15), one gets the 
trajectories shown on the (R, ~-) space-time diagram of Figure 1. The 
trajectories of the geodesically moving galaxies in Figure 1 are given by 

R = b7 "2/3, b = const (20) 

The constant b is a measure of the energy that a galaxy had at the big bang, 
measured relative to our galaxy at the origin R = 0. The usual picture in 
terms of the isotropic coordinates (r, ~-) used in (19) is shown in Figure 2, 
which repeats the world lines of the (R, r) space-time diagram for Figure 
1. Since r is a comoving spatial coordinate, the trajectories of the geodesic 
galaxies are vertical lines in Figure 2. In contrast, in terms of the measured 
proper distance R, Figure 1 shows all the galaxies "exploding" with infinite 
speeds from R = 0 at the big bang at z -- 0, and then evolving along geodesic 
trajectories given by (20). There is nothing intrinsically different between 
Figures 1 and 2; each figure is simply a coordinate deformation of the other. 
These and other features of the ES Universe are discussed in detail in 
Gautreau (1984). 

4. TIMES IN THE ES UNIVERSE 

The evolution of cosmological processes is determined by the Einstein 
field equations of general relativity, and proceeds according to ephemeris 
time z. One can picture this in Figure 1 (or Figure 2) by looking at the 
world line of a typical galaxy, say aeb. As the galaxy aeb evolves from the 
big bang at z--0,  the evolution of the stars, planets, etc., in the galaxy are 
determined by the ephemeris time ~- plotted on the ordinate of the (R, z) 
space-time diagram of Figure 1 [or the ordinate of the (r, r) space-time 
diagram of Figure 2]. 

In addition to evolution of stars, there will also be evolution of atoms 
in a galaxy such as aeb. Atomic evolution is governed by atomic theory, 
which, at our present state of knowledge of physics, is independent of 
general relativity. As such, atomic time tA according to which atomic 
processes evolve is independent of the ephemeris time z discussed above. 

It is usually assumed that the evolution of stars and the evolution of 
atoms in a galaxy proceed synchronously, i.e., that ephemeris time z and 
atomic time tA are equal to each other. However, because general relativity 
and atomic theory are two separate, independent theories, this usual assump- 
tion need not necessarily be correct. In fact, the LNh suggests otherwise. 
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Fig. 1. An (R, ~-) space-time diagram of galaxies and light signals in the Einstein-de Sitter 
(ES) Universe. The galaxies "explode" from R = 0 at the big bang at ~" = 0, and follow geodesic 
trajectories given by R = b7 z/3. The galaxy dh is the furthest galaxy we can see, in that the 
light from this galaxy reaching us now at our present epoch T = % was emitted at the big bang 
at ~" = 0. The light from a galaxy further out such as /j will not reach us until some time after 
%, and so is not yet visible to us. The present distance fh to the galaxy dh, which corresponds 
to the intersection of dh with the null line c~- = R/3, defines the location of the spatial horizon 
at our present epoch r = %. The cross-hatched region denotes the observable Universe, i.e., 
all the galaxies that can presently be seen by us. For example, the light from galaxy aeb that 
we see now was emitted from aeb at event e. 

If  ~- and ta are not equal to each other, then along the geodesic world 
line of a galaxy such as aeb there will be some functional relationship 
between 7 and ta: 

~" =f( tA)  (21) 
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Fig. 2. Repeating Figure 1 in isotropic coordinates ( r ,  r ) .  Since the spatial coordinate r is a 

comoving coordinate, the trajectories of galaxies are given by the vertical lines r = const. This 
figure is simply a coordinate deformation of Figure 1. 

Presumably this relationship will be monotonic.  If we now invoke the 
cosmological principle that there is nothing that distinguishes one geodesic 
galaxy from any other geodesic galaxy, the functional relationship (21) will 
be the same for all galaxies. This means in essence that ~" =f(tA)  in (21) 
defines a time coordinate transformation independent of the spatial coor- 
dinates. 

It is important to keep in mind that both of the times r and ta in (21) 
have direct physical significance, and are not simply mathematical con- 
structs. The time ~- measures the "ticks" recorded by cosmological clocks, 
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while the time tA measures the "ticks" recorded by atomic clocks. These 
ticks are, in principle, numbers that can be counted and recorded. As such, 
the ticks ~" and tA are independent of any coordinates that we might choose 
to use for describing the evolution of the Universe. 

We can, if we desire, change from describing the evolution of cosmo- 
logical processes by means of clocks recording ephemeris time r, and instead 
use atomic clocks that record atomic time tA. This change is equivalent to 
making a t ime coordinate transformation from r to ta according to the (as 
yet undetermined) functional relationship (21). Even though the atomic 
clocks may not be "good"  clocks for describing cosmological processes, 
there is no reason in principle why we cannot use them for time measure- 
ments. 

To express the ES metric in (R, ta) coordinates, we obtain from (21) 

dr =f t  dta, f ' =  df/dtA (22) 

which when substituted into the ES metric form (15) yields 

ds2(R, tA )=[dR- (2R /3c f ) f 'Cd tA]2+  R 2 d f~2-( f ' )2c  2 dt~a (23) 

With r as the time coordinate, we had dr = ds along the world line of  a 
galaxy, but when using tA, dtA ~ ds. Instead, as (23) tells us, ds = f '  dtA along 
the world line of  a galaxy. 

Thus, the picture we have is that at each space-time point in the ES 
Universe there are two types of  geodesically moving clocks. The cosmologi- 
cal clock records the ephemeris time r given by the motions of  cosmological 
bodies, while the atomic clock records the atomic time tA that is measured 
by vibrations of  atoms. 

Reconsider now the subspace r = const. From (22) it is seen that dr = 0 
means also that dta = 0, sO that a r =-const subspace is also a ta = const 
subspace. Thus we have from (23) 

ds2( R, t A = const) = dR2+ R 2 d f t  2 (24) 

which is the same as (12). Therefore, no matter whether we measure time 
with cosmological clocks recording r or atomic clocks recording tA, the 
proper distance between r- or ta-simultaneous events is still measured by 
the spatial coordinate R. This means that an (R, tA) space-time diagram 
will be qualitatively similar to an (R, r) space-time diagram, with R measur- 
ing proper  distance between simultaneous events on both diagrams, as 
shown in Figure 3. 

In the following, we are going to maintain R as the spatial coordinate, 
keeping in mind that it measures proper  distance between simultaneous 
events, whether the simultaneity is determined by r or tA. ThUS, the basic 
difference between the approach taken here and the approach of Dirac is 
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Fig. 3. World lines of galaxies of the ES Universe on (R, r) and (R, tA) , space-time diagrams. 
Since r is a function of only tA, i.e., ~" =f(tA) , a subspace ~" = const corresponds to a subspace 
t A = const. This means that the proper distance AL = AR between T-simultaneous events equals 
the proper distance between corresponding ta-simultaneous events. 

that  it is not  necessary  to in t roduce  an a tomic  unit  o f  length RA. Ins tead ,  
the p r o p e r  length,  which  is measu red  by  R, is de t e rmine d  f rom Eins te in ' s  
s t anda rd  theory .  In  this  m a n n e r  it is not  necessary  to i n t roduce  separa te  
met r ic  forms as Di rac  has  done.  

5. G M E A S U R E D  W I T H  C O S M O L O G I C A L  C L O C K S  

The p r o b l e m  at h a n d  is to de te rmine  the func t iona l  r e la t ionsh ip  (21) 
be tween  ephemer i s  t ime z and  a tomic  t ime tA. A sugges t ion  for  a poss ib le  
way to p r o c e e d  will  be given in this sec t ion by  look ing  at  an ope ra t i ona l  
way  for  measu r ing  G. 

The idea  o f  G stems f rom Newton ' s  s econd  law of  mo t ion  c oup l e d  
with N e w t o n ' s  law of  universa l  g rav i ta t iona l  a t t rac t ion ,  which  gives for  a 
test  par t ic le  o f  mass  m moving  in the field o f  a source  o f  mass  M 

- G M m /  R 2= t~d2 R /  d t  2 (25) 

It  is f o u n d  tha t  many  exact  express ions  ident ica l  with those  f rom N e w t o n i a n  
theory  resul t  when  the curvature  spat ia l  coo rd ina t e  R is used  in the  Eins te in  
field equat ions .  A s imple  example  is that  the  ( invar iant )  a rea  o f  sphere  is 
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4zrR 2. The expression for d R ~ d r  for a radially moving particle in a Schwar- 
zschild field is d R ~ d r =  ( 2 M / R - 2 M / R i )  1/2, which is identical with what 
is obtained from the Newtonian expression (25) with the Newtonian time 
t replaced with the proper  time r along the particle's world line. In addition, 
the curvature invariants for a Schwarzschild field vary as 1 / R  n, where n is 
a positive integer, indicating an intrinsic singularity at R = 0. 

The ephemeris time r that determines the evolution of the Universe is 
measured by the "ticks" of  cosmological clocks. As discussed in the previous 
section, the recording of cosmological ticks is independent of  any coordin- 
ates we should choose to work with. In turn, the proper  distance between 
r-simultaneous events, which corresponds to readings made with measuring 
rods, is also a coordinate-independent quantity. As we have described above, 
this proper  distance is equal to the curvature radial coordinate R. It follows 
then that quantities constructed from r and R, such as ve = d R ~ d r  and 
aE = d 2 R / d r  2 along the geodesic trajectories of  galaxies, will also be coor- 
dinate-independent quantities. 

Since we know the dynamics of the ES Universe, we can work out ve 
and a~ independently of  any statements about G. From (20) we know the 
variation of  R with r for a galaxy is R = b r  2/3, from which we find 

vE = d R ~ d r  = 2 b / 3 r  1/3 = 2 R / 3 r  (26) 

Substituting the present age of the Universe rn into (26) we obtain 

vE = HR,  H = ~r, (27) 

which is the Hubble relationship. From (26) we obtain 

d 2 R /  dr  2 = - 2 b / 9 r  4/3 = - 2 R / 9 r  2 (28) 

The amount  of  mass m attracting a galaxy that is a distance R from 
R = 0 is found by using the result that in (R, r) coordinates r 4= - p ( r )  
(Gautreau, 1984), so that over a r = const surface 

M = - 4 ~ r f r ~ R 2 d R = 4 7 r f p R 2 d R = 4 ~ r p f R 2 d R = p ~ T r R 3  (29) 

For an ES Universe, p = ~TrGr 2 (Gautreau, 1984), so that 

M = 2 R 3 / 9 G r  2 (30) 

Substituting the distance to the galaxy, R = b r  2/3,  into this, one obtains 

M = 2 b 3 / 9 G  (31) 

showing that the mass attracting a galaxy as it evolves is a constant. This 
is as it should be, because there is zero pressure and the attractive mass is 
due to the galaxies themselves. 
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The expressions (26)-(31) have resulted from the ES solution to the 
standard Einstein field equations. Other than the fact that there is a constant 
G appearing on the right-hand side of the field equations G p~= 
- ( 8 ~ G / c  4) T p~, which is there because of appropriate Newtonian fiat space- 
time considerations, we have not yet made any operational identification 
of G. We now do so. We now define Ge, Newton's gravitational constant 
measured with ephemeris cosmological clocks, as that quantity for which 
the motions of galaxies satisfy the relationship 

- G ~ M / R  2 = d 2 R / d . c  2 (32) 

which is a natural modification of the Newtonian expression (25). When 
GE is worked out from (32) by using (28) and (30), one obtains 

GE : G (33) 

Thus, the operational procedure described here gives the result that 
one wants, namely, a constant value GE = G. If the same procedure were 
carried out using other coordinates, say, (R, T) or (r, ~-) coordinates, the 
resulting Gz would not be a constant. It is only the measured coordinates 
(R, ~-), whose physical significance we have described above, that yield the 
desired constant value of G~ with the operational scheme we have desired 
here. 

It seems there is more here than just a coincidence. 

6. G MEASURED WITH ATOMIC CLOCKS 

Just as the "ticks" on cosmological clocks are coordinate independent 
quantities, so too are the "ticks" on atomic clocks coordinate independent 
quantities. Thus, although the (thus far undetermined) functional relation- 
ship between ~- and ta given by (21) represents a coordinate transformation, 
it also describes the relationship between the coordinate-independent ticks 
on the cosmological and atomic clocks that move together on the geodesic 
world line of  a given galaxy. 

As we have discussed in Section 4, the curvature radial coordinate R 
measures proper  distance determined by measuring rods between simul- 
taneous events, no matter if the simultaneity is determined by ~- or ta, SO 
that R is a coordinate-independent quantity. Therefore, constructs from the 
coordinate-independent quantities ta and R, such as VA = d R / d t A  and 
aA = d2R/dt~A along the geodesic trajectories of galaxies, will be coordinate- 
independent quantities, albeit having different functional forms from the 
other coordinate-independent quantities ve = d R ~ d r  and aE = d 2 R / d ~  "2. 

Essentially what we are discussing here is taking a distance measure- 
ment R determined by measuring rods, and finding its rate of change with 
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atomic clocks, just as we did with ephemeris clocks. Thus, VE = d R / d z  is 
the rate of  change of R when ephemeris clocks are used, while VA = d R / d t a  
is the rate of  change of R when atomic clocks are used. 

Let us assume that the functional relationship (21) between z and ta 
is a simple power relation 

r = at,~, a = const (34) 

(It  is easy to extend the following should the relationship be more compli- 
cated.) At our present epoch r = r ,  we have chosen ephemeris and atomic 
standards such that 

(d~'). = (dtA) .  (35) 

This in turn means that the constant a in (34) must be 

a = rln-m/m " (36) 

so that 
1--ra m m "r=(T n / m  ) t  A ( 3 7 )  

The distance to a galaxy given by (20) in terms of tA is 

R --- b'r 2/3= ba2/3t2A"/3 (38) 

From this we find 

VA = d R /  dta 2~1~2/3~'2m/3-1 = ~  . . . . . .  A (39) 

and 

aa = d g R /  dt2a = ~mba2/3(2m/3 - 1) t 2m/3-2 (40) 

The mass M attracting the galaxy will have the same value given in (31), 
since a r = const integration in (29) will give the same result as the corre- 
sponding ta = const integration. 

In obtaining the above set of expressions, we are still describing motions 
in the standard ES Universe. The only difference between what we have 
here and what is described in Section 5 is that we are measuring time with 
atomic clocks instead of cosmological clocks. 

Proceeding in the same spirit as in Section 5, we define GA, Newton's  
gravitational "constant"  measured with atomic clocks, by setting along the 
world line of  a galaxy 

- G A M /  R2oc d 2 R /  dt~ (41) 

When the above values are substituted into (41) and the proportionality 
constant adjusted such that (GA) .  = G, we obtain 

GA = G(  tA/ m~'. )2m-2 (42a) 
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or equivalently from (37) in terms of r 

G A  = a ( " r / T n )  2-2/m 

Gautreau 

(42b) 

7. APPLICATION OF THE LNh 

If the dynamical laws governing atomic clocks and the relationship 
between general relativity and atomic theory were completely known, the 
functional relationship (21) between r and tA could be worked out. Then 
GA as defined by (42) would be determined, since r = f ( t A )  would be known. 
However, we do not as yet possess a complete theory of atomic processes, 
much less an understanding of the connection of general relativity with 
atomic theory, so the functional relationship r = f ( t A )  cannot be determined 
from first principles. 

The usual approach is to make the assumption that the functional 
relationship is r = tA, from which it would follow that m = 1 and GA = G~ = 
G. It is important to recognize, though, that the statement r = tA is an 
assumption that does not at all follow from the completely separate theories 
of general relativity and atomic theory. We shall not follow this usual 
approach of assuming r =  tA. Instead, we shall invoke Dirac's LNh to 
determine the functional relationship r = f ( t A ) .  

As described in Section 1, the first two of Dirac's large dimensionless 
numffers require Goc t -1. This is a statement following from Newtonian 
considerations, with t being Newtonian absolute time. What is now 
necessary is to incorporate this idea into the formalism of general relativity. 

A way of bringing this Newtonian version of the LNh into line with 
general relativity is to follow Dirac and identify the time t in Goc t -1 with 
the atomic time tA used in Section 6. Thus, we will take as our guiding 
principle the interpretation of the LNh as requiring that when atomic clocks 
are used for measuring time, as described in Section 6, the variation of  GA 

as defined by (41) should be 

GA OC tA 1 (43) 

From (42a) we then find the power m in (37) is m = 1/2, resulting in 

tA = r2 /2r ,  (44) 

This is a different relationship between the two times from Dirac's 
relationship (7). In our proposed scheme for adopting the LNh into general 
relativity, Dirac's relationship (7) gives m = 2, resulting in, from (42a), 
GA oc t2A. This contradicts the LNh requirement that GA should vary as tA 1. 

Although our approach gives a time relationship between r and tA 
different from (7) obtained by Dirac, certain expressions that result from 
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our approach turn out to be identical with what Dirac has obtained. For 
instance, the variation of the distance of a galaxy measured with atomic 
clocks given by (38) is 

R = ba2/atlA/3 (45) 

which is identical with Dirac's expression (8). This means that the 
expressions of  Dirac that follow from (8), such as the atomic Hubble 
constant being HA = ltA, will remain unchanged, except for the replacement 
of Dirac's RA with Einstein's R. 

8. DERIVATION OF LN3 

In obtaining (43) and (44) we have used only the first two large numbers 
(1) and (2). We can therefore work  out  the variation with tA of the third 
large number LN3 defined in (3). 

Substituting (44) into (30), we obtain the mass up to a distance R at 
a time ta as 

M = R 3 / 9 G ' ; , t A  (46) 

We will associate the velocity in (3) with VA, the velocity measured with 
atomic clocks. To find the distance RvA of  the galaxy with a given velocity 
VA, we differentiate (45) to get 

d R / d t A  = VA = R / 3 t A  (47) 

from which 

R~ A = 3rAtA (48) 

Putting (48) into (46), we find the m a s s  -/VivA of  the galaxies having a speed 
up to v A t O b e  

M~A = ( 3V3A/ G.; , ) t2  a (49) 

This holds for any VA, including Dirac's choice VA = C/2. Since (LN3) 2 = 
M~A/mp,  we have 

(LN3) 2 = (3VZA/G~-,rnp)t 2 (50) 

which agrees with the time variation of the third large number LN3 as given 
in (5). This means that with the approach given here, LN3 is a consequence 
of the first two large numbers LN1 and LN2, and so need not be postulated 
separately. 
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9. THE NATURAL MICROWAVE RADIATION IN THE LNh 

Dirac (1979) has pointed out that the observation of natural microwave 
radiation, which appears to be of cosmological origin, provides another 
large dimensionless number that can be incorporated into the scheme of 
the LNh. The presently observed value of the temperature Tn of the micro- 
wave radiation is around 2.8 K, and if this is compared to the rest energy 
of a proton one obtains 

K T , / m p c  2 = (0.059 • 1039) -1/3 (51) 

According to Dirac, in the scheme of the LNh, a dimensionless number 
which is around (1039) n m u s t  vary proportionally to t~, so (51) requires 
that Toc tA U3. 

The following argument, which is similar to one put forth by Dirac 
(1979), shows that (51) is consistent with the LNh. Assuming the microwave 
radiation is black body radiation in an expanding universe, each spectral 
component of the radiation will be red shifted according to the same rule 
governing the expansion of the galaxies. From (45) the galaxies expand 
according to R oc t~ 3, SO that 

)t OC t~  3 (52) 

The temperature of the radiation will decrease in the same manner as the 
frequency f of  one of its components, so that 

Toc foc  A-I oc tA U3 (53) 

which is in agreement with (51). 
In obtaining (53) Dirac used an atomic unit of length RAOC tlA/3. W e  

see there, though, that the behavior of the natural microwave radiation 
follows from the LNh when the proper distance to a galaxy, R oc t~ 3, given 
by Einstein's standard theory is used as a length measurement. 

There is another way to show the agreement between the LNh and the 
natural microwave radiation. It is well known that the radiation density pr 
is related to the expansion factor e h(') in (9) by 

Pr 0r [ eh(~')] -4 (54) 

For an ES Universe, eh(r)oC 7 "2/3, SO that 

Pr OC 7 --8/3 (55) 

From the Planck law the radiation density pr in terms of mass/volume is 

163(KT)" 
Or h3 c 5 (56) 
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giving 

Finally, with ~-oc tlA/2, we have 
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Toc ~.-2/3 (57) 

Toc tA 1/3 (58) 

which is what is predicted from the LNh. 
Using (57), the large number of (51) can be expressed as 

LN4 = [ mpc2/ K T ]  3 = [ rnpc2/ KTn]3( :r / % ) 2 (59) 

The LN4 can be rewritten in terms of  densities. Substituting T from 
(56) into (59), we obtain 

[ 163rap ]3/4 
LN4 = kp,(h-7~e)3 J (60) 

The quantity h/mpC is the Compton wavelength ACp of a proton, 

Acp = h/'r%c (61) 

If we define the density of  a proton, pp, as 

mp (62) P, 4r 

LN4 in (60) can be written as 

[ | pp-13/4 [85.3pp13/4(7.12 (63) 
L N 4 =  L85"3 ~ l  = PrnJ \ % 1  

where we have used, from (55), 

p, = Prn('rn/ q') 8/3 (64) 

10. OTHER LARGE NUMBERS 

There are other large numbers fitting into the scheme of the LNh that 
apparently have not been considered by Dirac. One such number is 

distance to the galaxy moving away from us with a speed va 
LN5 = 

classical electron radius 

Rva ~ 1039 (65) 
ke2 / mec 2 

if VA ~ C. According to the LNh, (65) should vary as ta. With the velocity 
in (65) given by VA, the velocity of a galaxy measured with atomic clocks 
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given in (47), we have from (48) 

R~AOC tA (66) 

Thus, LN5 given in (65) varies as tA, and so in agreement with Dirac's LNh 
if the relationship between T and tA is tA OC .r 2. 

Another large number is obtained by taking the density of an electron 
pe obtained from 

me 
Pe - -  4 r ~ 3 '  Re = ke2/meC 2 = classical electron radius (67) 

~ "/T/~ e 

and dividing this by the density of rhatter pm in the Universe as given by 
the ES relationship 

Pm= ~1rG "r2 (68) 

to obtain 

9Gin 4c6 ,1.2 
LN6 = Pe/Pm -- ~ (69) 

With the present age of the Universe z, ~ 101~ yr, (69) gives 

(LN6).  = (Pc~Pro). ~" 1039 (70) 

From the LNh, one then expects (69) to vary as tA, which it does with the 
time relationship tA OC Z 2. 

11. A L T E R N A T E  D E R I V A T I O N S  OF tAocx 2 

In the above, we obtained the relationship tA~ ~.2 from the large 
numbers (1) and (2) together with an operational definition of GA. We then 
proceeded to show that the remaining large numbers were in agreement 
with this time relation. 

One can, however, rearrange the logical ordering, and have the relation- 
ship tA~ ' r  2 being a consequence of large numbers other than (1) and (2). 
To this end, assume an arbitrary functional relationship -r = Z(tA) as in (21), 
whose functional form is to be determined. With V A = d R / d t A  = 
(dR /d~ ' ) (d z /d ta ) ,  the large numbers discussed above then take the form 

Fc ke--~2 ( tA I2-2m ( 7 1 )  

LN1 - ~ - Gmeme \ mr .  / 

LN2 = tA (72) 
ke2 / me c3 

LN3:(ml)A~I/2 ( 3~)3t~. .~1/2 
\ my~ = 4mp(G(d~. /dta)3] (73) 
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L N 4 :  \ - ~ ]  \-~--~-~-] \ - ~ ]  (74) 

LN5 = R v a _  _ ~VA Z (75) 
Re ke2/rnec 2 ( d ~ / d t a )  

LN6 - Pe _ 9 G m  4c6 z2 (76) 
pm 2(ke2) 3 

We obtained the relation tA 0C r 2 by requiring LN1 oc LN2 to get m = �89 
in (71). However,  other combinations of  other LN's  also yield the same 
time relationship. For example,  requiring LN2 oc LN4 or LN2 oc LN6 gives 
directly ta oC z 2. Similarly, if we require LN5 oc LN4, we obtain 

~ ' / ( d z / d t A )  oc r 2 (77) 

from which it again follows that tA oC ~.2. 

It can easily be checked that all combinations of  the LN's  are consistent 
with tAOC'r 2. Thus, requiring all the LN's  to be proportional  to each other 
provides derivations of  the time relationship tAOC 2 independent from the 
one given in Section 7. 

There is a basic difference between LN2 and the other LN's.  LN2 is 
a statement about  two times, the ratio of  the age of the Universe to the time 
for a light signal to traverse an electron. As such, there is no way to derive 
LN2- - i t  is simply an observational statement. The variations with time of 
the other LN's ,  however, are derivable from first principles using Einstein's 
standard gravitational theory together with the specification that the Uni- 
verse under consideration shall be the ES Universe. 

12. T H E  T I M E  VARIATION OF THE LN's  

With tA = r2/2Tn we can write the LN's  in Section 11 explicitly in terms 
of tA and z once we choose a value for VA in LN3 and LN5. Dirac took 
VA = C/2 in LN3 only as a "ball  park"  value, so there is no fundamental  
reason for this choice. To relate VA to a physical quantity, we will choose 
VA to be the value of the velocity of  the galaxy at the horizon of the observable 
Universe at the present epoch % 

The cross-hatched regions of  Figures 1 and 2 show the observable 
Universe. Galaxies whose world lines are located in this region have emitted 
light that has reached our galaxy in the past, and also reaches us at the 
present epoch zn. For example,  we presently observe light from the galaxy 
aeb that was emitted at the event e. 

The furthest galaxy we can present see is galaxy dh, whose light reaching 
us now at our present epoch % was emitted at the big bang at z -- 0. Galaxies 
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further out such as galaxy /j are not able to be seen by us at the present 
epoch. The horizon galaxy dh has the property that at the present epoch 
zn it intersects the null line R = 3c-c, which is the last null line emitted at 
the big bang that continues in an outward direction (Gautreau, 1984). The 
intersection event h defines the spatial horizon at the present epoch. 

Using the results that the distance from our location to a galaxy is 
given by R = b7 "2/3 and the distance to the spatial horizon is Rn = 3 cr, we 
find the velocity vpH of the galaxy moving through the horizon h, as 
measured with ephemeris clocks, to be 

dR/dz = VEH = 2C (78) 

independent of the epoch. Although V~H > C, there are no problems with 
relativistic principles, for the world lines of all galaxies lie within the null 
cone at all events (Gautreau, 1984). 

The velocity van of the same galaxy through the horizon h measured 
with atomic clocks can be obtained from (78) using va = v~(dr/dtA) to get 

d R /  dta = YAH = 2C('rn/'r) (79) 

so that VAn depends on the epoch. Again, even though it is possible to have 
VA > C, there are no problems with relativistic principles. 

At the prese~zt epoch when r = r , ,  (VAH),=2C. Putting VA=2C and 
ta = r2/2r, in the LN's of Section 11, we obtain the LN's in terms of atomic 
time tA and ephemeris time ~- as 

LN1 - F c  ke2 (2tA I ke--~ 2 (---r) 2 (80) 
1=o Gmempk % / Gmemvk rn/ 

me c3 7"n{ lA ~ WleC3"l'n{ T ~ 2 
L N 2 =  ke 2 \ z , ]  = 2ke 2 \ ~ ]  (81) 

LN3 = ( Mc) '/2 = ( 6C3r"ll/2(2tA) = ( 6c3r~5~/2( "r ) 2 
\rap~ \ G m . /  \ z. / \Grnp/ \ r  (82) 

LNg=(mpc2"~3=(mpc2)3(2tA) =(mpc2"~3( "r'~ 2 (83) 

\ KT ] \ KTn] \ % ] \ KTn] \'r,,] 

ec 3meC3"rn(2tA~ 3meC3"rn(~'~ 2 
LN5 R e -  W \ ~ - ~ ] =  ke 2 \ ~ ]  (84) 

4 6 2  9Gmec "r~[ "r'~ L N 6 =  Pe _9Gm~eC~'r,(2tA'~ 4 6 2  2 
pm 2(ke2) 3 \ rn ] ~ \~.-~j (85) 
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Because we equated VA to the horizon galaxy's present velocity, VA = 
(VAn) ,  = 2C, LN3 and LN5 have the significance that at the present epoch 

(LN3) __ [mass  in the observable universe] 1/2 
mas----~ of----~ proto----~ 3 (86) 

distance to the horizon of the observable universe 
(LN5)n - (87) 

classical electron radius 

13. THE AGE OF THE UNIVERSE AND THE FUNDAMENTAL 
CONSTANTS OF NATURE 

With "in = 101~ yr, (LN6) ,  = 1.2 • 1039, which is about half  of  (LN1)n = 
2.3 • 1039. From (80) and (85) LN6 and LN1 are related by 

I f  we write (88) as 

9G2 c6 mSemp'i~ ~ . 

LN6 - ~ (LN1) (88) 

LN6 = �89 (89) 

we see that there is a fundamental  time "iy comparable to the age of the 
Universe "in = 101~ yr that can be formed from the fundamental  constants 
of  Nature: 

(ke2)2 - 3.05 • 1017 sec = 0.97 • 10 l~ yr (90) 
"I f  - -  ~ 3 ~ 5 / 2 ~ 1 / 2  

3Go ,,,e ,,,p 

Other groupings of  LN's  also lead to a similar time. 

14. C O S M O L O G I C A L  AND ATOM IC  CLOCK P E R I O D S  

From ta = r2/2"in, we can determine the ratio [3 = d r / d t A  as 

[3 (tA) = ( r , / 2 t A )  ~/2 (91a) 

[3('i) = "in/'i (91b) 

This means that atomic clocks are speeding up with respect to ephemeris 
clocks. This is just the opposite variation from what follows from Dirac's  
time relationship (7), which predicts that atomic clocks are slowing down 
with respect to ephemeris clocks. 

To check out (91), one can monitor the ratio [3 to see if it varies with 
time (either ephemeris time r or atomic time tA). The variation of/3 if the 
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monitoring is done with atomic clocks is 

dfl / dta 
= --1/2tA (92a) /3 

while if the monitoring is done with cosmological clocks, 

dfl/d.r= - l / ' r  (92b) 
13 

Equations (92) can be checked with suitable experiments. One possible 
check could be obtained from the ranging data from the Viking lander on 
Mars. With proper  analysis, this could determine the ephemeris period of 
Mars relative to c,~.omic clocks on Earth. 

15. THE PRINCIPLE OF EQUIVALENCE 

It is sometimes stated in the literature that if the ratio fl of  the periods 
of a coincident cosmological and atomic clock vary with the age of the 
Universe, there is then a violation of the principle of equivalence (PE). 
This, however, is not the case. 

The PE can be stated in the following way. Consider a local experiment 
performed in a reference system in a gravitational field. The PE states that 
if an identical local experiment is performed in fiat space-time in a second 
reference system that has an acceleration equal to the value of the gravita- 
tional field in the first reference system, the results of the two experiments 
will be identical. 

As an example, if the reference system in the gravitational field happens 
to be in free fall moving along a geodesic, then the equivalent fiat space-time 
reference system must also be moving along a geodesic, i.e., it must be 
unaccelerated. If, on the other hand, the reference system in the gravitational 
field is located at some fixed point in a static gravitational field, then the 
equivalent fiat space-time reference system must move along a hyperbolic 
trajectory of constant acceleration. We have given examples of various local 
experiments that illustrate the PE in Anderson and Gautreau (1969). 

The primary thrust of  this statement or most other statements of the 
PE is that the experiments must be local in nature. Now, the idea of a 
"local" experiment implies localness in time as well as space. The experiment 
referred to above of monitoring the periods of  a coincident cosmological 
and atomic clock over a time span of the order of the age of the Universe 
is not at all local in time. Therefore, one cannot apply the PE to this type 
of  experiment, nor conversely can one use the PE to make statements of 
the expected outcome of  this experiment. 
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16. DISCUSSION 

The starting point of  our analysis has been the notion of a cosmological 
clock measuring ephemeris time r and an atomic clock measuring atomic 
time ta located together at the same point, and therefore following the same 
geodesic world line through space-time. This world line satisfies the geodesic 
equations of  the standard Einstein theory, and corresponds to the world 
line of one of  the galaxies that is the source of the ES Universe. Proper 
distance between ~- or tA-simultaneous events is givenby the spatial coordin- 
ate R. The trajectory of a galaxy in the ES Universe in the various coordinate 
systems we have used is given by R = b7 "2/3 in (R, ~-) coordinates; R = ktlA/3 

in (R, tA) coordinates; r = const in (r, r) coordinates. 
As far as the author is aware, the operational way of specifying GA 

with the LNh as described in Sections 6 and 7 is new. It seems, though, 
that the application of  the LNh described in Section 7 is a most natural 
extension of  the operational result G~ = G established in Section 5. 

There are other observations besides the variation of GA that can be 
used to establish the time relationship t a = r2/2r,. As has been pointed out 
in Section 11, there are many combinations of the LN's independent of 
LN1 involving GA that can be used to establish the time relationship. We 
see also that one must be careful when discussing the variation of G, for 
when determined with ephemeris clocks GE = G, a constant value, while 
from (42) it is G a = G ( r n / 2 t a )  ---- G ( r n / ' r )  2 that varies with time. 

Section 9 shows that the observed natural microwave radiation provides 
experimental verification of the LNh. Section 14 shows that the formulation 
of  the LNh given in this paper makes a definite prediction about the rates 
of  planetary periods as compared with the rates of  atomic periods, which 
may be possible to detect experimentally. 

The existence of different atomic and cosmological times would mean 
that discussions of elementary particle processes in the early stages of  the 
Universe will have to be reconsidered, since such discussions so far have 
not taken into account the existence of  two separate time evolutions. 

C O M M E N T  

Dirac first formulated his LNh in 1938, and believed in its validity 
until his death in 1984 nearly a half a century later. It seem appropriate, 
therefore, to dedicate the present work to Dirac, whose personal comments 
to me on several occasions have sparked my work. Although his methods 
varied in trying to reconcile the LNh with Einstein's theory of gravitation, 
whose accomplishments and beauty he greatly admired, Dirac unswervingly 
maintained the validity of  the LNh. In a paper where he considered adopting 
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a generalization of general relativity given by Weyl that involved point- 
dependent units of length, Dirac (1973) made the following comment about 
the existence of the large numbers LN1 and LN2: 

It is hard to believe that this is just a coincidence. One suspects that there is 
some connexion between the two numbers, which will be explained when we 
have more knowledge of cosmology and of atomic theory. 

Subsequently, when he advocated a continuous creation of matter in the 
Universe to explain the LNh and the variation of G, Dirac (1974) said of 
the LNh: 

The reason for believing the hypothesis is that without it one does not see how 
these large numbers could ever be explained. 

Dirac (1979) eventually abandoned these approaches to the LNh, and his 
last version of the LNh involved two metrics in separate Einstein and atomic 
units. 

In the present paper, we have given an alternative way of incorporating 
the LNh into the standard Einstein theory of gravitation that does not 
involve two metrics. It thus seems appropriate to close this paper with the 
following statement made by Dirac (1974): 

The foregoing work is all founded on the Large Numbers hypothesis, in which 
I have great confidence. It also requires the assumption of two metrics, which 
is not so certain. The only reason for believing in the two metrics is that up to 
the present no alternative way of bringing in the Einstein theory has been thought 
of. But this situation could change. 
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